
1

Instructions for User access to Tartu University OpenAI Service.

General access to the OpenAI Service is granted through portal.azure.com. In there a user should have

access to TU-OpenAI-LLM-Department Resource group through one of two possible roles:

• Contributor – user with the ability to deploy OpenAI models and set configurations as well as fine

tune models on ‘training’ data sets

• Reader – user with the ability to only interact with OpenAI models by asking for completions or

embeddings

Most users for a resource group should fall under the second category with only select Contributor users

that manage the department workspace

To access the OpenAI user interface we need to navigate to portal.azure.com in our browser (log in with

our university credentials) and from there we navigate to Resource Groups:

Afterwards we select the resource group with our department name (e.g., TU-OpenAI-LLM-CompSc). In

the resource group we have two resources:

• OpenAI - which is our user interface for deploying, fine tuning and interacting with GPT models

• Key Vault – which is used to store API keys to access the deployed OpenAI models for application

development end experiments.

2

OpenAI Workspace environment allows the user to explore, develop and deploy models.

We can create a new deployment by selecting ‘Model Deployment’ or ‘Deploy’ actions. This is then

followed by choosing ‘Create new deployment’ option. The Deployment name can then be referenced in

the API calls.

3

When creating new deployment, it is necessary to select advanced options (available once the model has

been chosen) and reduce the Tokens Per Minute value to the lowest acceptable one. This value

corresponds to the total amount of tokens that can be sent to the model each minute. Since this value

counts towards Tartu University global quota, it is important to have a justification for having values above

40000.

You can also add a budget option by choosing your ‘Resource group’ and navigating to ‘Cost

Management’ -> ‘Budgets’.

4

From there you can name your budget, choose creation and expiration date and ‘amount (in euros)’ for

your limit.

The ‘Explore’ section in the OpenAI overview can be used to interact with the deployed models from the

user interface.

For large scale interactions for experimental or application purposes the preferred option is to access the

API through a different endpoint that is managed by Tartu University directly. For Reader users this is the

only way to interact with the OpenAI API outside of the User interface seen before.

The Tartu University managed API can be accessed using REST interface with POST method. The

reference for Open AI REST API can be found here:

https://learn.microsoft.com/en-us/azure/ai-services/openai/reference

For current implementation only ‘chat completions’ (GPT-35-Turbo model) and ‘Embeddings’ (text-

embedding-ada-002 model) are supported.

https://learn.microsoft.com/en-us/azure/ai-services/openai/reference

5

For the API REST access for chat completions, you will need 3 parameters to access the API:

• Your resource name – the last part of your resource group name in azure, this should be provided

via email together with these instructions

• Your deployment name – this is the deployment name found in Azure OpenAI Studio, it is the

deployment name a Contributor user creates when deploying a model (see image above)

• Your API Key – this is found in the Key Vault resource in your Azure resource group (see access

instructions bellow pages 6 - 7)

• (optional) Your model name – when using Python openai library a model name has to be

provided, it is the model name that is found under deployments in Azure OpenAI Studio (see image

above)

These are three examples for accessing Tartu University managed OpenAI API

Using CURL:

curl --request POST \

 --url 'https://tu-openai-api-management.azure-api.net/<your resource

name>/openai/deployments/<your deployment name>/chat/completions?api-ver-

sion=2023-07-01-preview' \

 --header 'Content-Type: application/json' \

 --header 'User-Agent: Insomnia/2023.5.6' \

 --header 'api-key: <your key here>' \

 --data '{

 "messages": [

 {

 "role": "user",

 "content": "Does Azure OpenAI support customer managed keys?"

 }

],

 "max_tokens": 200,

 "temperature": 0.3

}'

Using Python requests package:

6

import requests

url = "https://tu-openai-api-management.azure-api.net/<your resource

name>/openai/deployments/<your deployment name>/chat/completions "

querystring = {"api-version":"2023-07-01-preview"}

payload = {

 "messages": [

 {

 "role": "user",

 "content": "Does Azure OpenAI support customer managed keys?"

 }

],

 "max_tokens": 200,

 "temperature": 0.3

}

headers = {

 "Content-Type": "application/json",

 "User-Agent": "Insomnia/2023.5.6",

 "api-key": "<your key here>"

}

response = requests.request("POST", url, json=payload, headers=headers,

params=querystring)

Using Python openai package:

import openai

openai.api_type = "azure"

openai.api_key = "<your key here>"

openai.api_base = "https://tu-openai-api-management.azure-api.net/<your

resource name>"

openai.api_version = "2023-07-01-preview"

create a chat completion

chat_completion = openai.ChatCompletion.create(

 deployment_id = "<your deployment name>",

 model="<your model name>",

 messages=[{"role": "user","content": "Does Azure OpenAI support customer

managed keys?"}]

)

To access the value of your API Key for Tartu Managed OpenAI API we need to go to Key Vault in our

resource group which hosts the two API keys that can be used for access. Both keys are valid and are

7

used to rotate access when changing keys.

The specific keys are located under ‘Secrets’ section in the resource:

Keys can be accessed by clicking on them to open the versioning and then clicking once more on the most

recent version:

8

Version:

The key can be seen by clicking on the ‘Show Secret Value’. After copying the key, we can insert it in the

<your key here> section in one of the code examples above.

Additional information – access for embeddings models

9

For the API REST access for embeddings, you will need the same 3 parameters to access the API:

• Your resource name – the last part of your resource group name in azure, this should be provided

via email together with these instructions

• Your deployment name – this is the deployment name found in Azure OpenAI Studio

• Your API Key – this is found in the Key Vault resource in your Azure resource group (see access

instructions in pages 6 - 7)

These are three examples for accessing Tartu University managed OpenAI API for embeddings

Using CURL:

curl --request POST \

 --url 'https://tu-openai-api-management.azure-api.net/<your resource

name>/openai/deployments/<your deployment name>/embeddings?api-version=2023-

07-01-preview' \

 --header 'Content-Type: application/json' \

 --header 'User-Agent: Insomnia/2023.5.6' \

 --header 'api-key: <your key here>' \

 --data '{"input": "Does Azure OpenAI support customer managed keys?"}'

Using Python requests package:

import requests

url = "https://tu-openai-api-management.azure-api.net/<your resource

name>/openai/deployments/<your deployment name>/embeddings"

querystring = {"api-version":"2023-07-01-preview"}

payload = {"input": "Does Azure OpenAI support customer managed keys?"}

headers = {

 "Content-Type": "application/json",

 "User-Agent": "Insomnia/2023.5.6",

 "api-key": "<your key here>"

}

response = requests.request("POST", url, json=payload, headers=headers,

params=querystring)

Using Python openai package:

10

import openai

openai.api_type = "azure"

openai.api_key = "<your key here>"

openai.api_base = "https://tu-openai-api-management.azure-api.net/<your

resource name>"

openai.api_version = "2023-07-01-preview"

create a chat completion

chat_completion = openai.ChatCompletion.create(

 engine = "<your deployment name>",

 input = "Does Azure OpenAI support customer managed keys?"

)

