

Artificial Intelligence Agents to Support Data Mining for SoS Modeling of Space Systems Design

By: Chivit Chhoeun Seminar on Space and Military Technology

12.11.2020

Table of Contents

- I. Introduction
- II. System-of-Systems Analysis and Synthesis: Analytic Work Bench and Previous Steps
- III. Artificial Intelligence
- IV. Case Study: NASA Gateway Habitat
- V. Conclusion and Future Work
- VI. References

Introduction

- System-of-Systems (SoS) problem
- Tools: SoS Analytic Work Bench (AWB)
- Large space mission size and complexity still results in bottleneck.

Proposed Solution

Figure 1: Combining application of Artificial Intelligence and SoS Analytic Work Bench

System-of-Systems Analysis and Synthesis: Analytic Work Bench and Previous Steps

- SoS cannot always be analyzed with conventional Systems Engineering methodology.
- Analytic Work Bench (AWB) was developed to meet the need of the DoD.
- Features:
 - Assess the developmental risks and uncertainty in time and resources, and policy contextual questions.
 - Other tools and methodologies that provide information on the operational aspects of complex architectures

Systems Operational Dependency Analysis

- Provide analysis of the impact of dependencies in the system
- A set of parameters is used to produce a simple model of the dependencies between each system
 - The Strength of Dependency (SOD): a linearized operational dependency between systems in the case of small disruptions.
 - The Criticality of Dependency (COD): the loss of operability due to major disruptions.
 - The Impact of Dependency (IOD): the boundary between the small disruption regime and the major disruption regime.

SODA piecewise linear model of dependency of the operability of system *j* on the operability of system *i*.

Systems Developmental Dependency Analysis

- Applied to the developmental domain.
 - Model of the interactions between constituent systems of a SoS for what concerns development and schedule.
 - The Strength of Dependency (SOD) in SDDA model evaluates the fraction of development time of a system that is dependent on inputs by other systems.
 - The Criticality of Dependency (COD) models the level of punctuality below which partial parallel development of systems is not acceptable.

Completion time of system i and beginning time of system j in function of the parameters of the developmental dependency between the two systems. Due to partial dependency, system j can begin its development before completion of system i, unless i is critically late.

Artificial Intelligence Agents

- Contents in NASA Technical Reports Server (NTRS)
- Utilized supervised machine learning.
- Each of the agents analyzes millions of paragraphs in the 60,000 papers and returns a similarity score for each.
- Detection of concepts, topics or themes at the paragraph and/or sentence level
- Natural Language Programming (NLP) and computational linguistics.

Case Study: The NASA Gateway Habitat

 Objective: Use results from the *AI agents* search to retrieve useful information that can be fed into tools of the AWB for analysis of SoS features of the habitat architecture.

• Steps:

- Training of the AI agents
- Utilization of the agents to identify relevant sources and extraction of the necessary information
- Analysis of the habitat architecture with AWB tools.

Workflow

- Extract the text fields/document paragraphs and create library via API or drag/drop
- Create & train agents
- 3. Score docs/data & generate analyses
- 4. Export scores via API or CSV
- Use BI dashboard or customize to analyze and publish

AI agents training phases

1	A		В		C		D	E
1	PDF Link	*	Relevant?	*	Title	*		
2	http://hdl.handle.net/2060/2019000183	3	N JSC-Rocknest: a Large-Scale Mo					
3	http://hdl.handle.net/2060/20180001134	4	Y		Plasma Methane Pyrolysis for Spa			
4	http://hdl.handle.net/2060/20160014040	0	Y Design, Developme				pment, an	d Testin
5	http://hdl.handle.net/2060/2016000970	5	Y		Development of a Microwave Re			
6	http://hdl.handle.net/2060/20160009119	9	Y		Self-Cleaning Boudouard Reactor			
7	http://hdl.handle.net/2060/20160008970	0	Y		Self-Cleaning Boudouard Reactor			
8	http://hdl.handle.net/2060/2016000896	7	Y		Self-Cleaning Boudouard Reactor			
9	http://hdl.handle.net/2060/2016000802	7	Y		Bosch Reactor Development for			
10	http://hdl.handle.net/2060/20160008003	3	Y		Atmosphere Resource Recovery a			
11	http://hdl.handle.net/2060/20160003489	9	Y		HESTIA Phase I Test Results: The			
12	http://hdl.handle.net/2060/20160002633	3	Y		NASA Advanced Explorations Syst			
13	http://hdl.handle.net/2060/2015002150	3	Y		Thirsty Walls: A New Paradigm fo			
14	http://hdl.handle.net/2060/2015001835	3	Y		Self-Cleaning Boudouard Reactor			
15	http://hdl.handle.net/2060/20150016512	2	Y		Advanced Oxygen Recovery via Se			
16	http://hdl.handle.net/2060/2015000302	1	N		Biological Water Processor and F			
17	http://hdl.handle.net/2060/2014001720	0	N		Support of LAVA Integration and			
(ntrs) Atmosphere Management v5 (ntrs) Command & Data Handling								

Spreadsheet showing part of the results of version 5 of the AI agent for Atmosphere Management. The literature sources have been reviewed by Subject Matter Experts, who indicated whether the source is relevant to the topic or not.

Conclusion

- Illustrated an application of Artificial Intelligence to create a preliminary space architecture database and to retrieve useful sources of data used to feed a set of SoS tools.
- Future work:
 - Implementation and Training of AI agents capable of interpreting natural language descriptions
 - Use of filters on the sources identified by each agent provided information about disruptions and failures of specific subsystems.

Thank You!!

References

- 1. <u>https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9172802</u>
- 2. <u>https://www.sebokwiki.org/wiki/Systems_of_Systems_(SoS)</u>
- 3. <u>https://towardsdatascience.com/super-learner-versus-deep-neural-network-aa78547aabd7</u>
- 4. https://en.wikipedia.org/wiki/Natural-language_programming